Resettable Landing Gear for Mars Hopper

Boston University
College of Engineering

BOSTON UNIVERSITY William Gullotta
Coleton Kirchner
Aaron Yuengert

Mars Hopper

- University of Leicester Space Research Centre
- Extends mission range and capability of Mars missions
- Issue No design for multi-use landing legs exists

Mission Requirements

- Vehicle mass of 1000 kg
- Max 2.5 m/s vertical velocity
- Max 2 m/s horizontal velocity
- Max slope of 20°
- Max tilt angle of 2°
- Max obstacle diameter of 0.5 m

Design Concept

Electromagnetic shock absorption solution

Electromagnetic Damper > Approach

Model the shock as an ideal mechanical damper:

$$F_d = -c_d v$$

- Mover: 1 magnet capped by 2 pole shoes
- Stator: Ferromagnetic shell and single phase coil

Electromagnetic Damper > Model

- Machine constant, Kt, determined by:
 - Magnet radius
 - Magnet strength
 - Physical properties of damper

- Resistance, R, determined by:
 - Wire radius
 - Number of turns

$$R = \frac{r_i + r_s}{r_w^2 \sigma}$$

$$L_{coil} \frac{dF_d}{dt} + R_{coil} F_d = K_t^2 v$$

$$\tau \frac{d\nu}{dt} + \nu = F(t)$$

$$F_d = \frac{K_t^2}{R_{coil}} v$$

$$F_d = -c_d v$$

$$c_d = \frac{K_t^2}{R_{coi}}$$

Prototype Design

Parameter	Model Value	Determines	Determines	Determines
Stroke/coil length	0.19 m	Travel distance (+)		Velocity at impact (-)
		Resistance (+)	Damping constant	Deceleration (+) Maximum load (+) Velocity at impact (-)
Wire diameter	0.00145 m	Resistance (-)		
Number of coil	5	Resistance (+)	(-)	
layers	3	Machine constant (+)	Damping constant (+)	
Magnet width	0.0254 m			
Magnet radius	0.0254 m			
Number of magnets	1			
Air gap width	0.0011 m	Machine constant (-)		
Pole shoe width	0.0125 m			
Spring constant	145.355 N/m			Deceleration (-) Maximum load (-) Velocity at impact (+)

Prototype Construction

Differences from design:

- Replaced single long coil with an array of smaller coils
- Moved separator tube from mover to stator

Prototype Testing

Drop tests were performed and data was gathered using an optical sensor. An equation of motion was derived and fit to the data to find the damping constant c

$$z(t) = -\frac{gm}{c}t + \frac{k_1m}{c}e^{-\frac{c}{m}t} + k_2$$

2 Magnets, Test 2

-0.94

-0.96

-1.02

-1.04

-1.06

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

Time (s)

1-Magnet configuration:

$$c = 91.1 \pm 8.8 \text{ kg/s}$$

2-Magnet configuration:

$$c = 176 \pm 14 \text{ kg/s}$$

Touchdown Dynamics > Theory > Approach

Mathematical Model

- Generalized coordinates x and z
- 4 legs, 3 struts per leg
- Primary strut has stroke s_I , spring constant k_I and damping constant c_I
- Secondary struts s_2 , k_2 , c_2

Assumptions

- Point mass *m* at vehicle center of gravity
- Each strut idealized as linear spring and linear dashpot
- secondary struts identical and symmetric

Touchdown Dynamics > Theory > Model

Kinetic Energy

$$T*=\frac{1}{2}mv^2$$

Potential Energy

$$V = mgz + \frac{1}{2}k_1s_1^2 + k_2s_2^2$$

Generalized Work

$$dW = \Xi_1 dx + \Xi_2 dz =$$

$$-c_1 \dot{s}_1 ds_1 - 2c_2 \dot{s}_2 ds_2$$

Energy dissipated by the dampers

Generalized Forces

$$\Xi_1$$
 and Ξ_2

$$\frac{d}{dt} \left(\frac{d\mathcal{L}}{d\dot{x}} + \frac{d\mathcal{L}}{d\dot{z}} \right) - \frac{d\mathcal{L}}{dx} - \frac{d\mathcal{L}}{dz} = \Xi_1 + \Xi_2$$

Express \mathcal{L} , Ξ_1 , and Ξ_2 in terms of x and z to obtain equation of motion.

CANNOT SOLVE ANALYTICALLY

Simulation

SolidWorks Motion Studies

Single-leg initial impact

Vertical landing

Independent variables:

- Damping constants
- Spring constants
- Stroke lengths

Deceleration vs. time graph of single-leg initial impact

Damping constant (all struts)	1000 N s/m
Spring stiffness (all struts)	800 N/m
Stroke of primary strut	0.667 m
Stroke of secondary struts	0.600 m

Final values

Final Design

Final Landing Gear Design

Exploded Strut

Exploded Stator

Thank You

Questions?

Appendix

Equation of Motion:

$$m\ddot{z} + mg - k_p \left(\frac{l_{p0}}{l_p} - 1\right)(z+b) - 2k_s \left(\frac{l_{s0}}{l_s} - 1\right)(z+d)$$

$$= -\dot{z} \left[c_p \frac{(z+b)^2}{x_1^2 + y_1^2 + (z+b)^2} + 2c_s \frac{(z+d)^2}{x_1^2 + y_2^2 + (z+d)^2} \right]$$

Appendix

Budget Calculations:

Found volume of each material in design and multiplied it by its density to find its mass

$$= \left(m * \frac{Price}{kg}\right)_{Cu} + \left(m * \frac{Price}{kg}\right)_{Al} + \left(m * \frac{Price}{kg}\right)_{Stl} + \left(N_{NdFeB} * \frac{Price}{N_{NdFeB}}\right) \\ + .15(Cost_{Cu} + Cost_{Al} + Cost_{Stl}) \\ = \left(133.76 \, kg * 6.77 \, \frac{\$}{kg}\right)_{Cu} + \left(25.48 \, kg * 1.76 \, \frac{\$}{kg}\right)_{Al} + \left(95.8 \, kg * 1.10 \, \frac{\$}{kg}\right)_{Stl} \\ + \left(48 \, magnets * 228 \, \frac{\$}{N_{NdFeB}}\right) + .15(Cost_{Cu} + Cost_{Al} + Cost_{Stl} + Cost_{NdFeB}) \\ \approx \$13,800$$